

Fabio Massimo Marchetti

Vice Presidente ANIE Automazione Executive partner Linfa Digitale

Digitalizzazione: a che punto siamo

Il percorso dell'industria digitale 4.0/5.0 Industria 4.0 - Abilitazione Industria 4.0 - Base Industria 4.0 - Effettiva Industria 5.0 - Inizio INTERCONNESSIONE **GESTIONE OPERATIVA** UTILIZZO DEI DATI PROSPETTIVE FUTURE Interconnessioni Gestione dinamica Interconnessione con Ricerca della dei fattori produttivi altri sistemi di sostenibilità ambientale degli impianti gestione Analisi dati per Sviluppo del benessere Riconfigurazione Identificazione delle persone «dentro e automatica dei creazione di percorsi delle aree di di miglioramento fuori l'impresa» sistemi produttivi inefficienza Utilizzo degli Analisi predittive Riduzione degli scarti incentivi 4.0 Ottimizzazione dei fattori produttivi La maggior parte delle Piccole e Medie Imprese italiane si Riduzione dei posizionano ancora consumi nella fase 1 e fase 2 Fonte: Linfa Digitale

Digitalizzazione: macchinari connessi

Macchinari e impianti connessi: a che punto sono i vostri clienti?

Hanno già adottato macchinar / impianti connessi all'interno dei propri stabilimenti

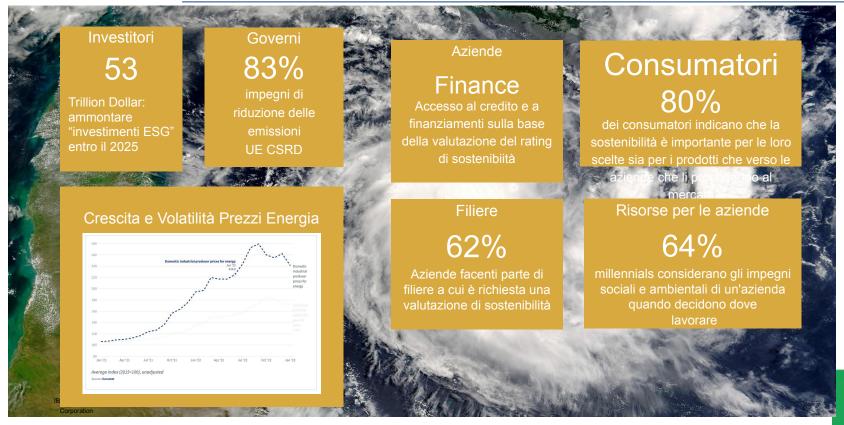

Sono indecisi e stanno iniziando solo ora a valutare investimenti in questo mercato

Non sanno ancora di cosa si tratta

Principali barriere che frenano le aziende nell'adottare macchinari e impianti connessi:

grandi aziende tecnologie IoT

grandi aziende interessate ad attivare **servizi aggiuntivi abilitati dalle**



Fonte: Osservatorio loT Politecnico di Milano

Digitalizzazione e sostenibilità... perchè?

Lo scenario che si impone

Necessità effettive delle imprese industriali per affrontare il cambiamento in essere

- efficacia,
- efficienza,
- flessibilità (resilienza)
- persone al centro

Principali obiettivi

67% Benefici di efficienza (es. riduzione dei costi e/o tempi)

47% Benefici di efficacia (es. miglioramento processi produttivi)

37% Sfruttare i dati resi disponibili dagli oggetti connessi

28% Guadagnare o mantenere un vantaggio competitivo

Base: 96 grandi aziende | Fonte: Osservatorio IoT Politecnico di Milano

Da approccio **tattico** alla digitalizzazione ed alla sostenibilità (piano Industria 4.0) ad approccio **strategico** (Transizione 4.0, Transizione 5.0, fondi a supporto della digitalizzazione erogati attraverso la rete dei DIH, EDIH, CC, fondi stanziati da bandi nazionali e regionali)

Nasce il piano Transizione 5.0

"Transizione 5.0" mira a favorire la **transizione digitale ed energetica** delle imprese tramite la concessione di crediti d'imposta, con una dotazione finanziaria complessiva pari a **euro 6.300.000.000**.

Dal 16 agosto, con la pubblicazione della **«Circolare Operativa – Transizione 5.0»**, la linea di investimento Transizione 5.0 è entrata sostanzialmente a pieno regime. Il 12 settembre è stato firmato il <u>decreto direttoriale</u> che apre l'area della piattaforma GSE per la presentazione delle comunicazioni di completamento dei progetti di innovazione nell'ambito del Piano Transizione 5.0 completando in questo modo il quadro degli strumenti operativi a supporto del piano.

Documenti di riferimento:

Microsoft Word - FAQ MIMIT 31-10-2024 - Seconda versione del documento di FAQ del 2 novembre

FAQ_MIMIT_8-10-2024.pdf – Primo documento di FAQ post decreto

Decreto direttoriale 11 settembre - <u>Decreto</u> (pdf) - Presentazione comunicazioni di completamento dei progetti di innovazione Circolare operativa 16 agosto 2024 - <u>Circolare</u> (pdf) - Chiarimenti tecnici utili alla corretta applicazione della disciplina agevolativa Decreto direttoriale 6 agosto 2024 - <u>Decreto</u> (pdf) -Termini e modalità presentazione domande

Decreto interministeriale 24 luglio 2024 (pdf) - Modalità attuative del Piano Transizione 5.0

Art. 38 del <u>decreto-legge 2 marzo 2024, n. 19</u> (normattiva.it) - Ulteriori disposizioni urgenti per l'attuazione del Piano nazionale di ripresa e resilienza (PNRR)

Transizione 5.0: ambiti di agevolazione

Sono agevolabili i progetti di innovazione avviati dal 1° gennaio 2024 e completati entro il 31 dicembre 2025 aventi ad oggetto investimenti effettuati in uno o più beni materiali e immateriali nuovi strumentali all'esercizio d'impresa di cui agli allegati A e B alla legge 11 dicembre 2016, n. 232 tramite i quali è conseguita complessivamente una riduzione dei consumi energetici della struttura produttiva localizzata nel territorio nazionale, cui si riferisce il progetto di innovazione, non inferiore al 3 per cento o, in alternativa, una riduzione dei consumi energetici dei processi interessati dall'investimento non inferiore al 5 per cento. Nell'ambito del progetto di innovazione sono, altresì, agevolabili: a) gli investimenti finalizzati all'autoproduzione di energia da fonti rinnovabili destinata all'autoconsumo b) le spese in attività di formazione.

- a. Investimento trainante beni materiali e immateriali nuovi strumentali all'esercizio d'impresa di cui agli allegati A e B legge 11/12/2016, n. 232;
- **b. Investimento trainato** beni materiali nuovi strumentali all'esercizio d'impresa finalizzati all'autoproduzione di energia da fonti rinnovabili destinata all'autoconsumo, anche a distanza ad eccezione delle biomasse, compresi gli impianti per lo stoccaggio dell'energia prodotta;
- **c. Investimento trainato** attività di formazione finalizzate all'acquisizione o al consolidamento delle competenze nelle tecnologie rilevanti per la transizione digitale ed energetica dei processi produttivi.

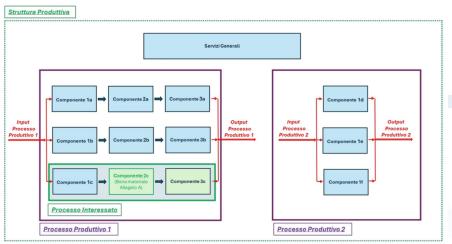
Nota relativa all' investimento trainante relativo ai beni immateriali

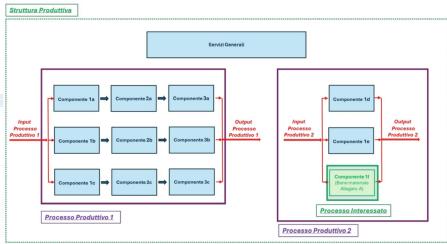
Sono stati inclusi i software relativi alla gestione di impresa se acquistati nell'ambito del progetto di innovazione che comprende investimenti in sistemi, piattaforme o applicazioni per l'intelligenza degli impianti che garantiscono il monitoraggio continuo e la visualizzazione dei consumi energetici e dell'energia autoprodotta e autoconsumata, o introducono meccanismi di efficienza energetica, attraverso la raccolta e l'elaborazione dei dati anche provenienti dalla sensoristica IoT di campo ("Energy Dashboarding").

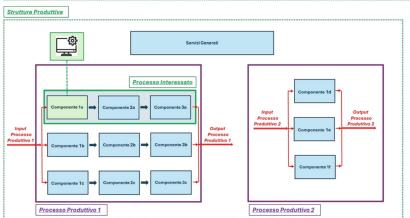
Transizione 5.0: i nuovi incentivi

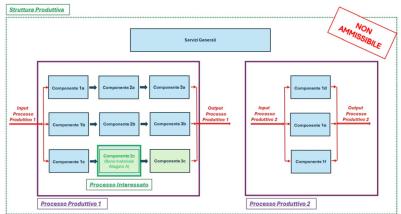
TIPOLOGIA INVESTIMENTO MASSIMALI DI SPESA		Risparmio almeno del 3% per la struttura produttiva o del 5% per il processo oggetto di innovazione	Risparmio almeno del 6% per la struttura produttiva o del 10% per il processo oggetto di innovazione	Risparmio almeno del 10% per la struttura produttiva o del 15% per il processo oggetto di innovazione	
PROGETTO DI INNOVAZIONE	Fino a 10 mln€	35%	40%	45%	
	Da 10 a 50 mln€	5%	10%	15%	

Transizione 5.0: struttura vs. processo

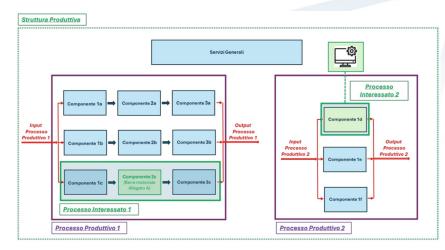

Il processo produttivo è inteso come l'insieme di attività correlate e finalizzate alla trasformazione di risorse (input) in un determinato prodotto e/o servizio (output) o di una parte di essi. Il processo interessato coincide con il processo produttivo interessato dalla riduzione dei consumi energetici conseguita tramite gli investimenti in beni materiali e immateriali nuovi. Nel caso in cui il processo produttivo sia costituito da più linee produttive in parallelo interessate dai medesimi input e che producono il medesimo output, potrà essere considerato come processo interessato solo la parte oggetto d'investimento in progetti di innovazione, purché questa garantisca, in autonomia, la trasformazione dell'input nell'output del processo. Analogamente, è possibile che il processo interessato coincida con un unico bene materiale purché questo garantisca, in autonomia, la trasformazione dell'input del processo.

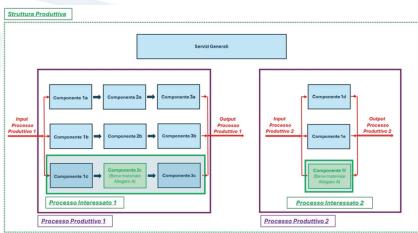

La struttura produttiva coincide con il sito, costituito da una o più unità locali o stabilimenti insistenti sulla medesima particella catastale o su particelle contigue, finalizzato alla produzione di beni o all'erogazione di servizi, avente la capacità di realizzare l'intero ciclo produttivo o anche parte di esso, ovvero la capacità di realizzare la completa erogazione dei servizi o anche parte di essi, purché dotato di autonomia tecnica, funzionale e organizzativa e costituente di per sé un centro autonomo di imputazione di costi. Al fine della determinazione del risparmio energetico relativo alla struttura produttiva, si specifica che i consumi energetici della stessa coincidono con la somma dei consumi energetici dei processi produttivi e dei servizi generali.





Transizione 5.0: processo interessato





Transizione 5.0: struttura produttiva

Qualora il progetto di innovazione riguardi l'acquisto di uno o più beni materiali o immateriali a servizio di più processi produttivi, la riduzione dei consumi energetici dovrà essere determinata rispetto alla struttura produttiva. In tal caso, infatti, una differente configurazione non sarebbe ammissibile in quanto non sarebbe possibile calcolare la riduzione percentuale dei consumi energetici separatamente per due o più processi produttivi all'interno della medesima struttura produttiva.

Transizione 5.0: percorso oggi in essere

Progettazione «Progetto di innovazione» con le sue componenti: beni materiali e/o beni immateriali 4.0, autoproduzione di energia, formazione

Certificazione ex ante del consumo energetico e del risparmio previsto

Comunicazione ex ante a GSE (prenotazione)

Comunicazione versamento acconto 20% entro 1 mese da prenotazione

Esecuzione investimento e comunicazione avanzamenti a GSE

Interconnessione

Certificazione 4.0 e certificazione risparmio energetico ex post

Certificatore revisore dei conti

Comunicazione completamento e certificazioni a GSE

Autorizzazione del GSE alla compensazione in funzione dei risultati ottenuti (limite max determinato dalla prenotazione iniziale)

Compensazione in F24 entro 2025 e residuo in 5 rate annuali

Novità introdotte dalla legge di bilancio 2025

Transizione 5.0

- Accorpamento dei precedenti due scaglioni di taglia di investimento portando la prima fascia da 0 a 10 Mil.
- Maggiori incrementi per gli investimenti per le fonti rinnovabili correlati alle classi di efficienza oggi portate a 30% per classe A, 40% per classe B, 50% per classe C (i pannelli devono essere Made in EU).
- Cumulabilità con gli incentivi previsti per le aree ZES e con tutte le agevolazioni nazionali ed europee (permane il vincolo di coprire le stesse spese con due agevolazioni.
- La sostituzione di macchinari obsoleti (sono macchinari che hanno terminato il periodo di ammortamento da oltre 24 mesi) permette al macchinario di accedere alla classe di risparmio minima (35% fino a 10M). Rimane la necessità di certificazione.
- In caso di acquisto di beni 4.0 tramite contratto EPC con una ESCO, l'efficientamento energetico previsto viene considerato ottenuto.

Transizione 4.0

Abrogazione dell'incentivo previsto anche per il 2025 sugli investimenti immateriali 4.0.

Scenario 5.0: i costruttori

Il consumo di energia effettivo (consumo per unità di prodotto realizzata) diventa un significativo fattore di scelta e di posizionamento nel mercato.

Le logiche di massima velocità di esecuzione (e di affidabilità) non sono più le uniche come fattore di progettazione ed evoluzione dei macchinari.

La creazione di scenari controfattuali già predisposti per la realizzazione di nuovi processi produttivi può essere un forte elemento di differenziazione in fase di proposta.

La generazione di proposte evolutive di "processi interessati" completi crea opportunità aggiuntive.

Rimane necessaria ed abilitante la predisposizione 4.0

Scenario 5.0: gli end user

Necessità di elevata conoscenza dei processi e dei fattori produttivi al fine di definire le aree di intervento che possono garantire anche le riduzioni di consumo richieste per accedere agli incentivi (progetto di innovazione).

Proseguimento del percorso di digitalizzazione passando da un approccio tattico ad un approccio strategico con revisione complessiva dei processi ed un uso esteso dei dati per migliorare efficacia ed efficienza operativa.

Impostazione di logiche di generazione locale delle necessità energetiche sfruttando le fonti rinnovabili rendendosi resilienti alle dinamiche di costo dell'energia.

Miglioramento del proprio posizionamento in termini di sostenibilità (ambientale e sociale) anche attraverso la formazione e la semplificazione delle attività delle persone.

Vuole offrire una guida pragmatica attraverso la quale sia possibile identificare le componenti di riduzione dei consumi che si possono ottenere dalla diverse tecnologie digitali.

Questo documento non intende fungere da strumento analitico, ma piuttosto rappresentare una sorta di check list che permetta di verificare che tutte le opportunità di riduzione del consumo energetico siano state considerate al fine di raggiungere e massimizzare l'obiettivo effettivo di risparmio energetico e, quindi, di accedere alle fasce più alte di incentivazione

Il sinottico riassuntivo

Basso

AREA	TECNOLOGIE	Riduzione consumi	Flessibilità/ Produttività	Affidabilità	Usabilità	Riduzione costi	Sostenibilità
PRODUCTION MODELING	Systems & production infrastructure modeling						
	Industrial Design						
	Architectures & infrastructure design						
	Digital twin						
PIANIFICAZIONE	Planning						
	Scheduling						
	Supply chain						
PRODUZIONE	Manufacturing operations management						
	Manufacturing execution management						
	Manufacturing performance management & analytics						
	Manufacturing processes control and analytics						
	Traceability & genealogy management						
	Identification and localization solutions						
LOGISTICA	Warehouse management systems						
	Supply-Chain Management						
	Traceability & genealogy management						
	Transportation						
QUALITÀ	Quality management						
	Predictive quality						
	Vision and inspection systems						
	Document management & workflows						

Medio

Medio basso

Alto

Molto alto

Il sinottico riassuntivo

Basso

AREA	TECNOLOGIE	Riduzione consumi	Flessibilità/ Produttività	Affidabilità	Usabilità	Riduzione costi	Sostenibilità
MANUTENZIONE	Maintenance management						
	Maintenance & Predictive Maintenance & Condition Monitoring						
ENERGIA E SOSTENIBILITÀ	Energy monitoring & efficiency						
	Sustainability management, monitoring and analytics						
	Health, safety & environment management						
ARCHITETTURE ABILITANTI	Cloud						
	Edge computing & Deep Edge Intelligence						
	Trusted IoT						
	Operations network infrastructures						
	Machines & automation devices interconnection						
	Cybersecurity IT, OT, bordo macchina						
GESTIONE DATI & AI:	Advanced analytics						
	Al applied on industrial processes						
	Integrated data management						
MACHINES & EQUIPMENTS REMOTE MANAGEMENT:	Remote machines & connected products platforms						
	Edge frameworks & computing						

Medio

Medio basso

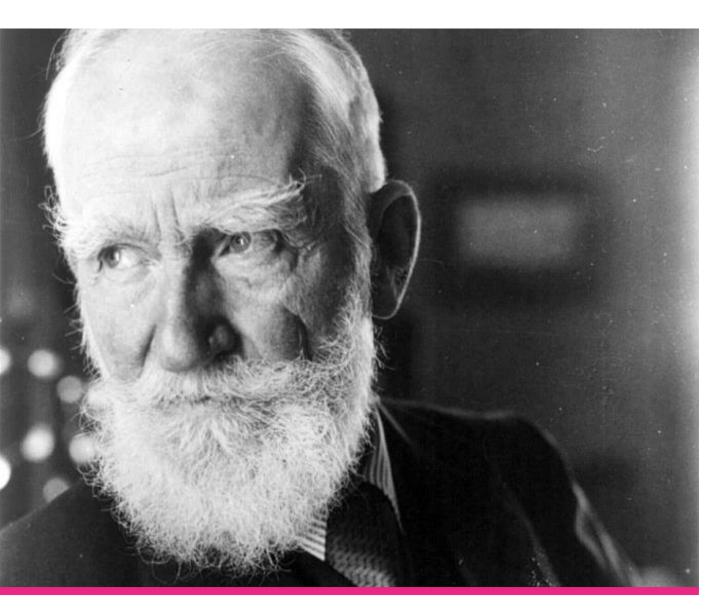
Alto

Molto alto

Il Vademecum è scaricabile al seguente link: https://shorturl.at/2jTw8

Grazie per l'attenzione!

Il futuro è nei dati


MARCO TAISCH

PROFESSORE DI DIGITAL MANUFACTURING AL POLITECNICO DI MILANO E CO-FOUNDER DI MIRAITEK

SCHOOL OF MANAGEMENT Manufacturing Group

"You see things; and you say, 'Why?'
But I dream things that never were; and I say, "Why not?"

(Charles Bernard Shaw)

"Vi siete mai chiesti quante decisioni della vostra giornata sono influenzate dai dati, anche senza che ve ne accorgiate?"

Un dato sui dati: Sorprendente

Un dato sorprendente: "ogni giorno, produciamo oltre 2,5 quintilioni di byte di dati. Ma quanti di questi vengono usati davvero per creare valore?"

Da Nativi Digitali a Nativi Sostenibili

I prodotti del futuro

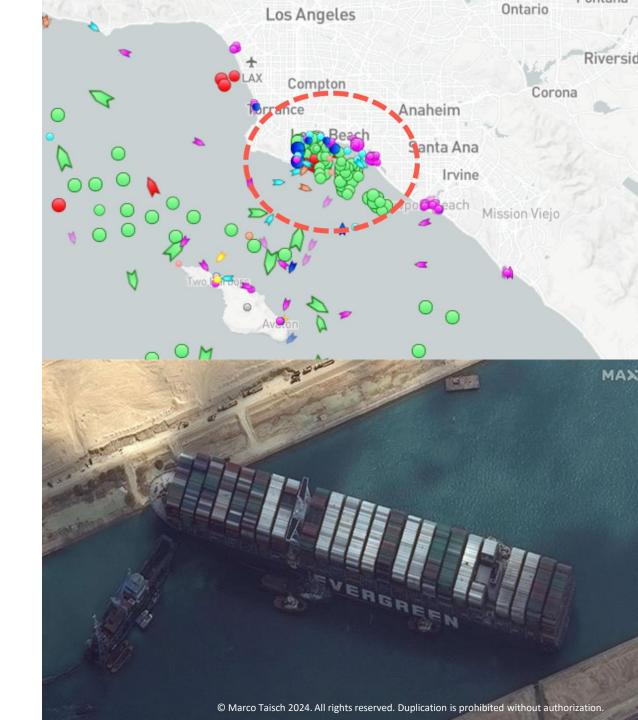
- Diagnostica
- Localizzazione
- Sensoristica

- Con il produttore
- Con l'utente
- Con gli altri oggetti

- Bassi consumi di energia
- Riciclabilità

- Nella concezione/produzione
- Nella fruizione/pagamento

- Proprietà fisiche e meccaniche
- Producibilità



La Sostenibilità come arma di geopolitica

Logistica come collo di bottiglia del futuro

The **Economist**

Venezuela erupts

How to defend Taiwan

India's internet tycoon bets big

Drones: hovering with intent

JANUARY 36TH-FEBRUARY 1ST 2019

Slowbalisation

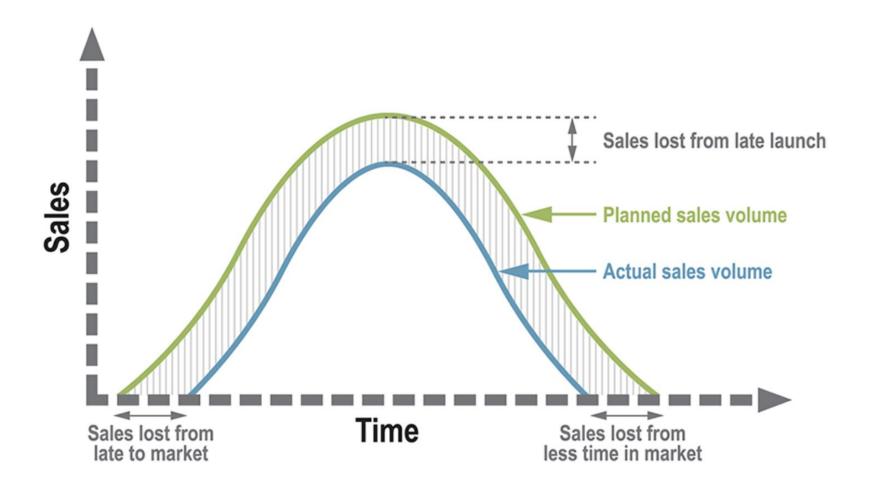
The future of global commerce

Flaws in the Fed's plan

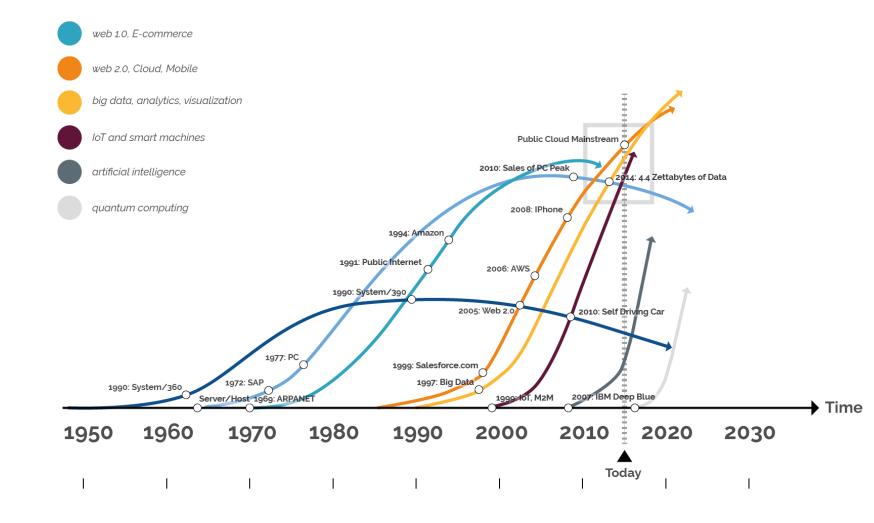
Ukraine and the future of the tank

Greening buildings: why so slow?

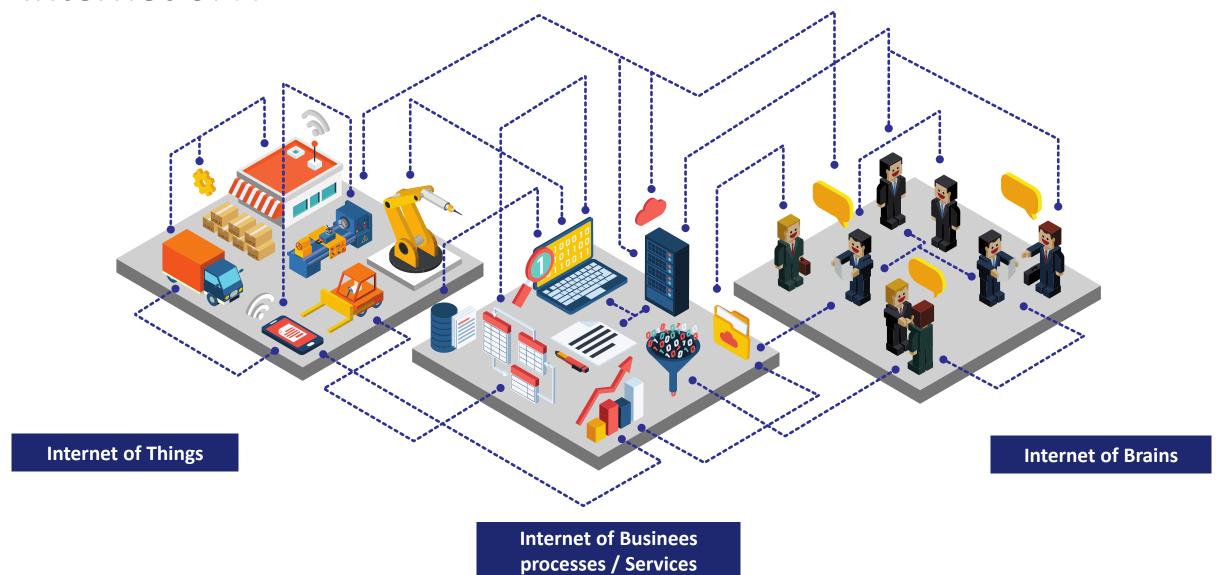
A special report on Latin America


JUNE 18TH-24TH 2022

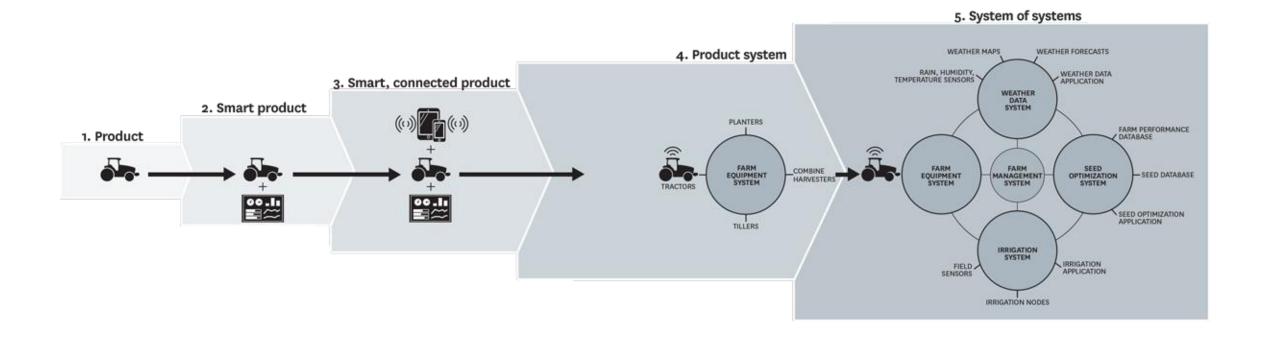
Reinventing globalisation



Riduzione del time to market

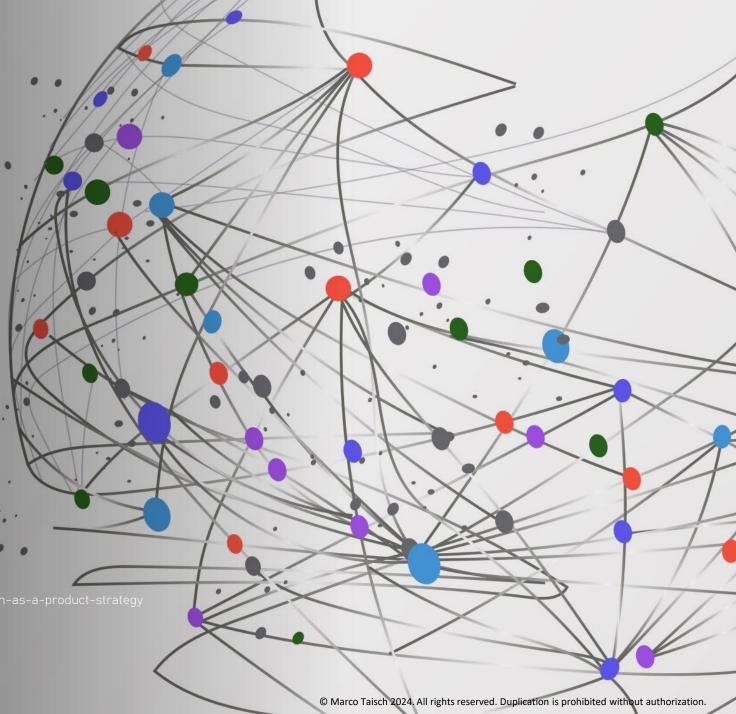


Source: Sopheon, 2017


L'effetto combinatoriale delle tecnologie digitali

Internet of X

Ecosistema di modelli di business


Fonte: <u>Harvard Business Review</u>, 2014

Servitizzazione

- 70% delle aziende settore manifatturiero ha avviato iniziative di servitizzazione.¹
- L'adozione di strategie di servitizzazione può portare alla crescita annuale del service income del 15–20%.²

1 Da (Schroeder et al., 2022)

2 Da https://www.accenture.com/us-en/blogs/industry-digitization/servitization-as-a-product-strategy

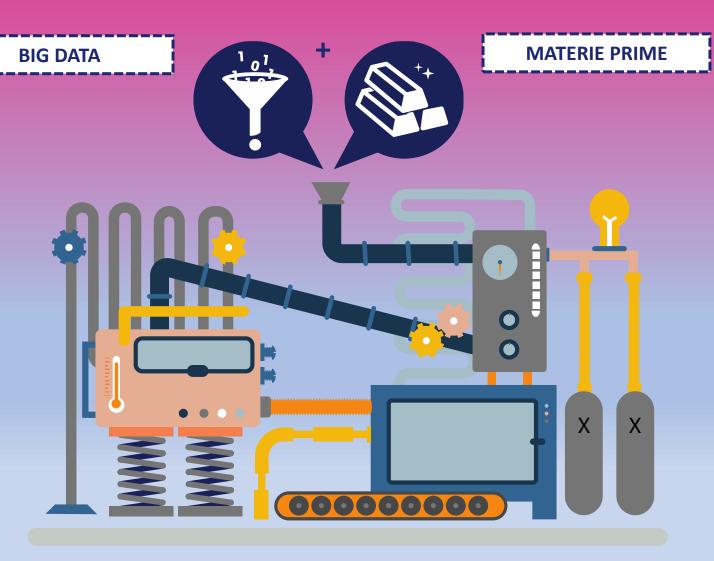
Strategie di servitizzazione

Servizi di base

Fornitura di prodotti e di pezzi di ricambio

Servizi intermedi

Riparazione del prodotto, monitoraggio delle condizioni, assistenza sul campo e assistenza clienti



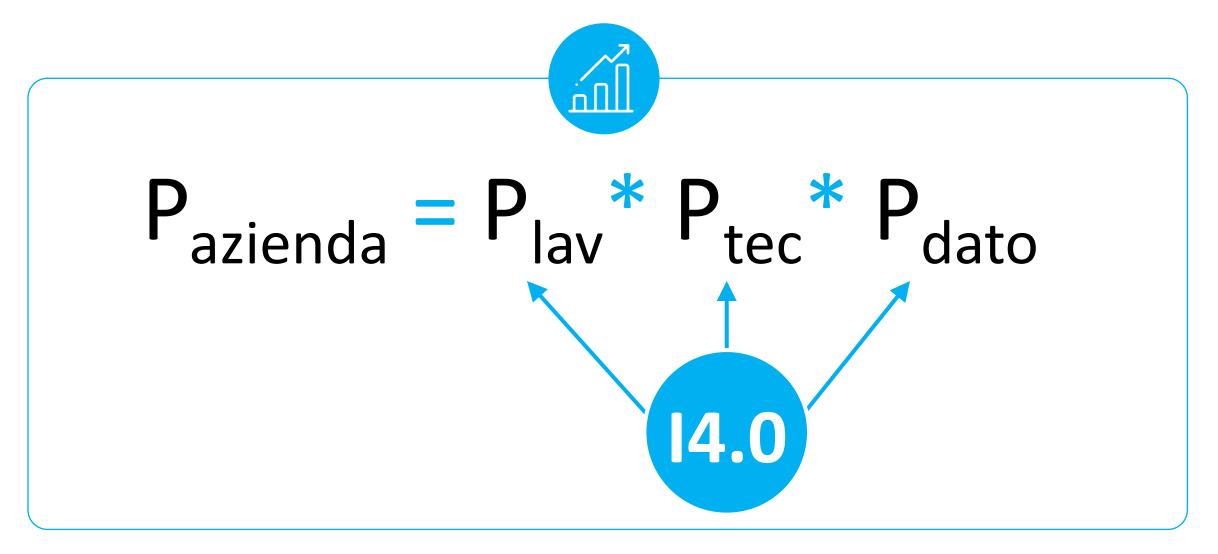
Servizi avanzati

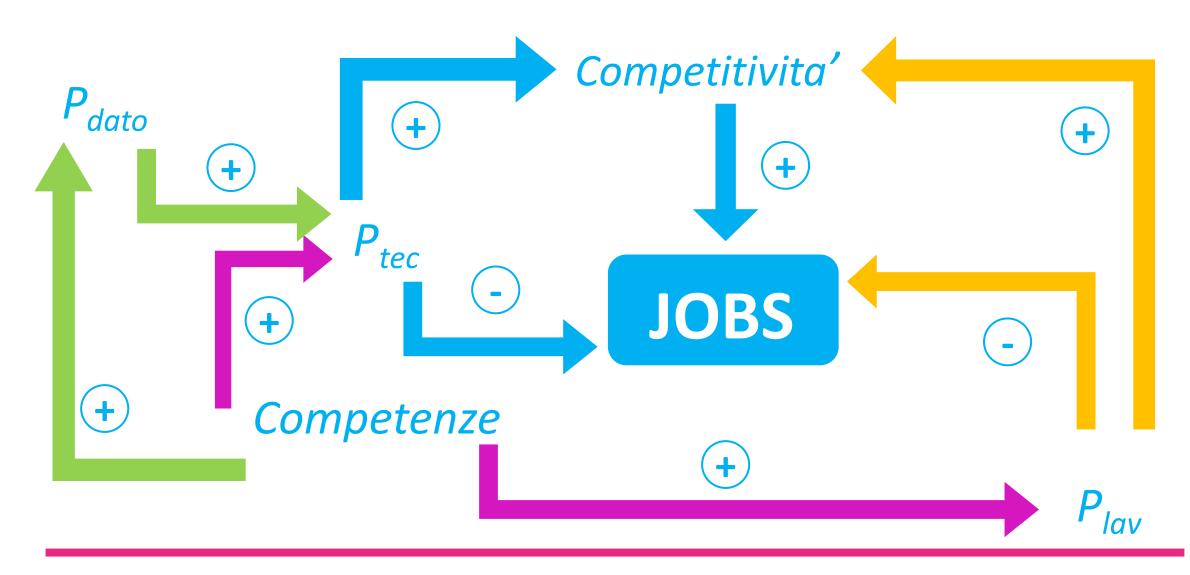
Pay Per Use, Fleet
Management,
Contratto di
Disponibilità e
Soluzione Integrata

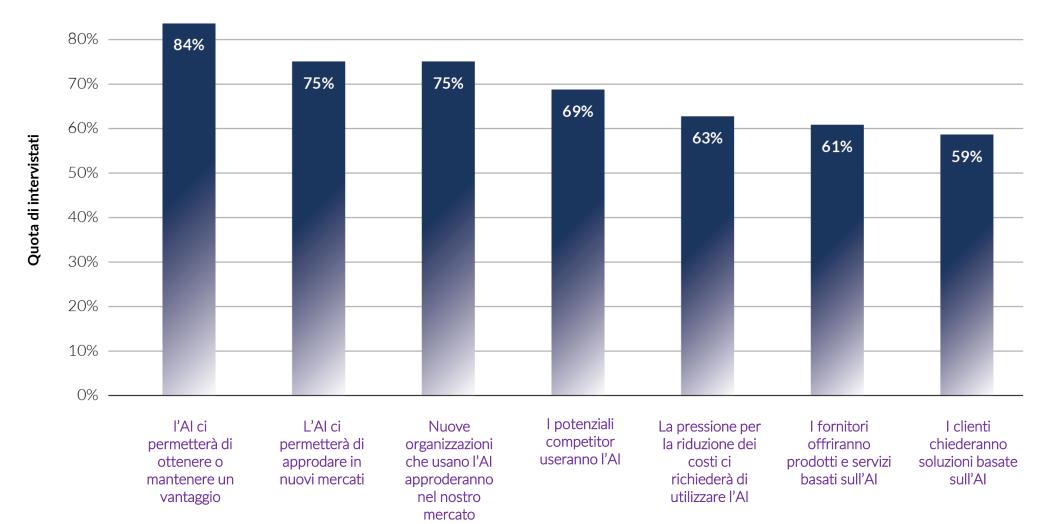
La Cultura del Dato

- Dati diventano "materie prime"
- Non sono riconosciuti nello stato patrimoniale
- 3 D's: Data Driven Decisions

PRODOTTO




I dati come quarto fattore produttivo


I Dati e la Produttività

L'impatto dei dati sulla competitività

Le aziende stanno sempre più adottando l'IA per ottenere un vantaggio competitivo

Ragioni per cui le aziende hanno adottato l'Al a livello mondiale (fonte Statista)

Settori chiave per l'adozione di Intelligenza Artificiale

Le aziende stanno sempre più adottando l'IA per ottenere un vantaggio competitivo (Source: 2019 Deloitte survey on Al adoption in manufacturing)

(Fonte: indagine di Deloitte sull'adozione dell'Al nel manifatturiero, 2019)

Smart production

51%

Products and services

25%

Business operation and management

8%

Supply chain

8%

Business model decision-making

4%

No adoption/plans

4%

MARCO TAISCH

PROFESSORE DI DIGITAL
MANUFACTURING AL
POLITECNICO DI MILANO E
CO-FOUNDER DI MIRAITEK

SCHOOL OF MANAGEMENT Manufacturing Group **November, 27**th - 2024 Reggio Emilia – Italy

Innovation day

Data-Driven Service Strategies

Innovation and Proactive Maintenance in Modern Industry

OEM side

Federico Milan

agenda index

au Fuoda

1. introduction

2. data-driven ecosystem

3. Hools And Approaches

4. USES CASES

5.

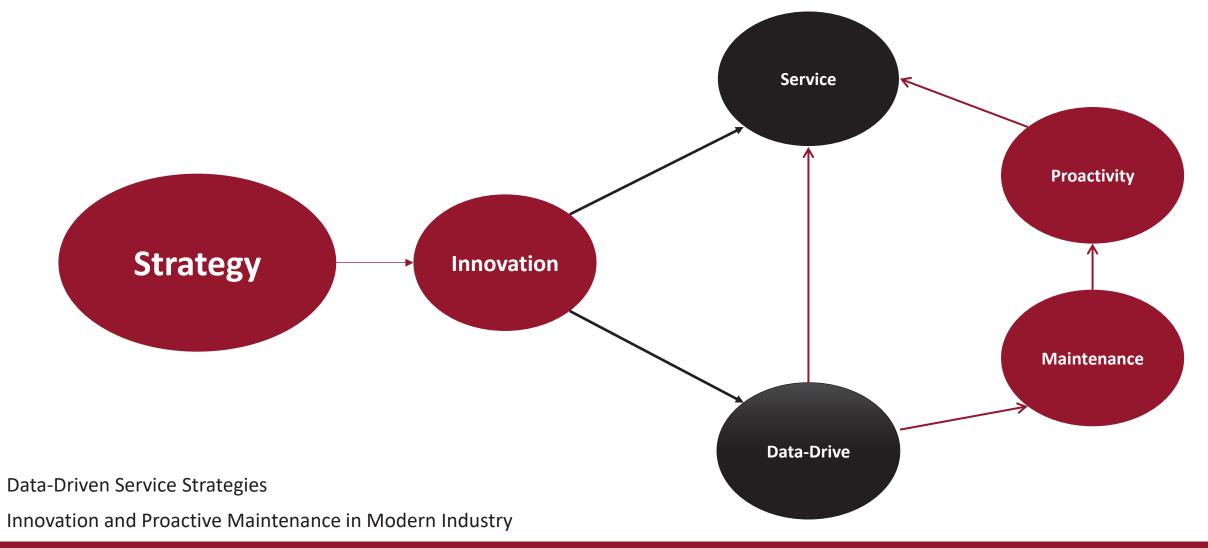

End-presendation

bibliography

HOUT US

НГЕНОП




Introduction

- ➤ Innovation: What is it?
- Business Model
- > Partnership

Innovation

Innovation is a perspective, we must think beyond

Business models

The business model defines the framework within which a company operates and creates value for its customers and stakeholders.

Cost Structure

Costs that are involved in all aspects. Fixed and variable cost, scale economy, sustainability, ...

Market Segmentation

Specific group of potential customers

Operation Processes

Dato to day activity, production, distribution, customer service.

Value Proposition

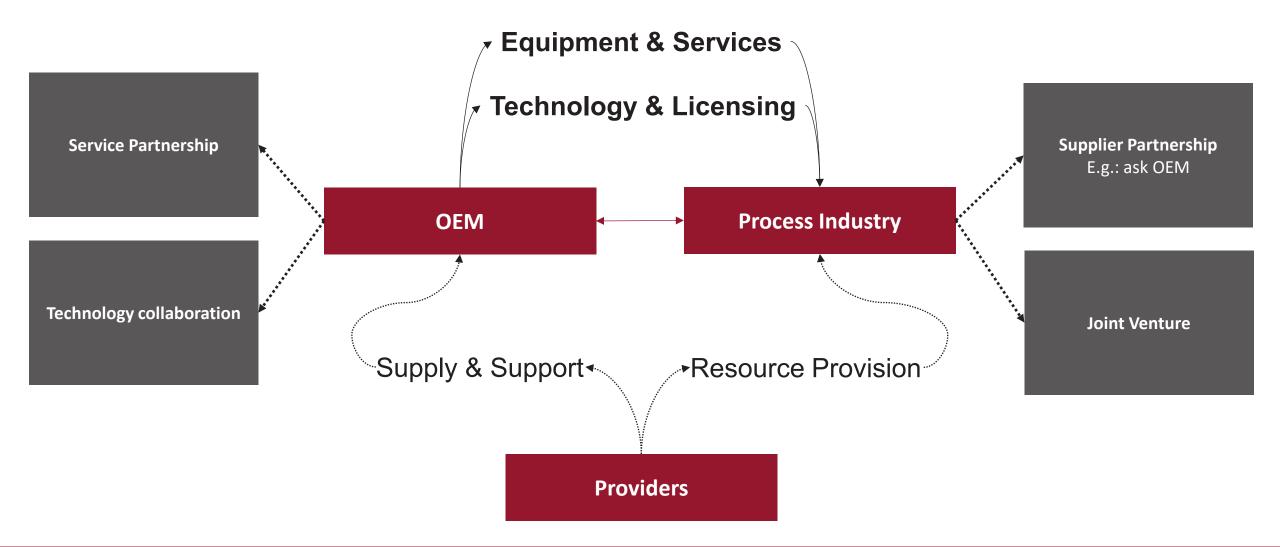
What make product/service attractive to customers.

Revenue Streams

How company make a money

Key Resources

Essential assets, intellectual properties, human, financial


Key Partnerhip

Network of supplier, distributors, collaborators, ...

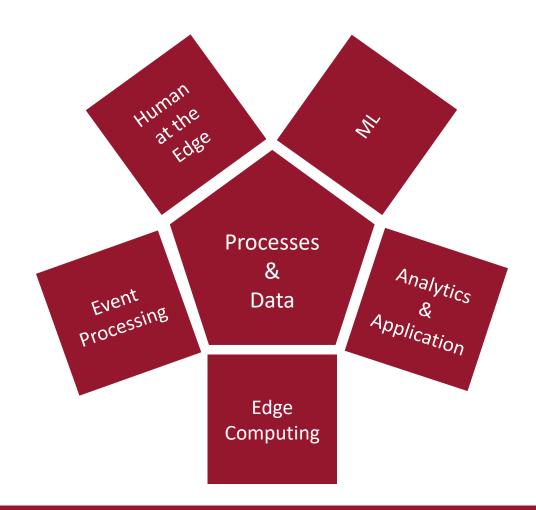
Partnership: Provider, OEM and Process Industries

Competitive and rapidly evolving industrial landscape calls for strategic partnerships

Towards a Sustainable Digital Future – OEM Focus

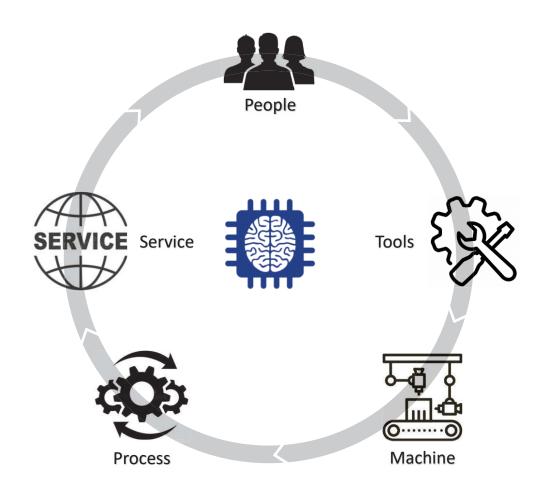
Data-Driven Ecosystem

- Data-Driven Ecosystem
- Human-Centric Design and Industry 5.0


Data-Driven Ecosystem

A data-driven ecosystem integrates and analyzes continuous data collection to enhance operations, decisions, and customer experiences.

DATA DRIVEN


INTEGRATION

GOVERNANCE

Data-Driven Ecosystem

\rightarrow People \times Tools \times Service \times Process \times Machine

Five Elements of AI profitability

People

The value of AI is in the help that the person perceives. Without the person there is no AI, because value is a property of the person.

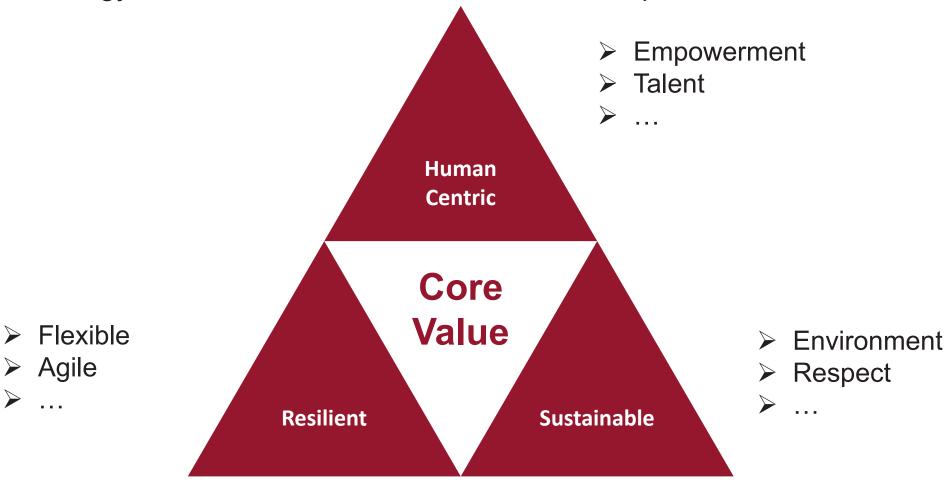
Service

Al finds its being in the provision of services, services are the value that people attribute in the actions, results, facilitations, ... that they obtain

Tools

Al allows you to know, understand, provide useful information, create value for example by reducing intervention times, providing targeted solutions. Al is a tool and should be understood and used as such.\

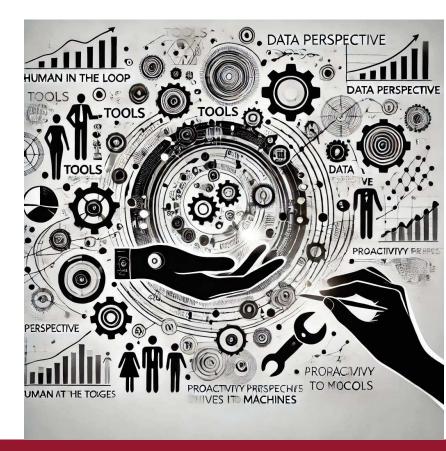
Process


Process control can be done with legacy logic, preferable when the data is contextualized and the process can be represented as a closed form. The process is a source of data for Al. Al can control processes, the benefit is when processes are not well defined.

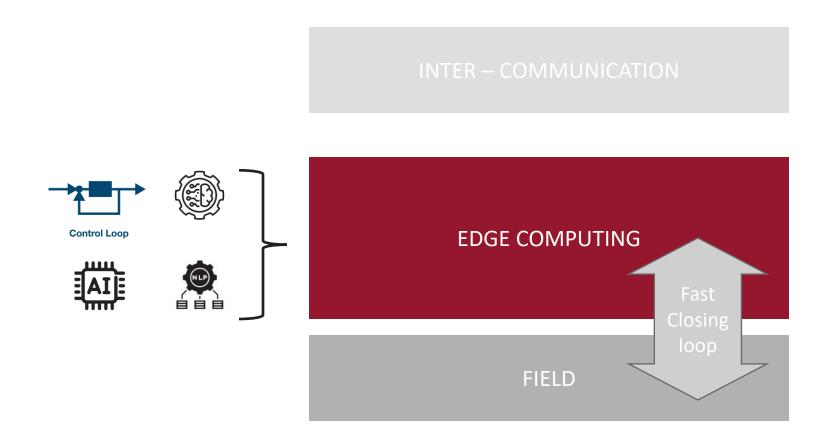
Machine

Machines make transformative processes, AI can improve awareness and perform predictions about usage, maintenance, potential fault events, ...

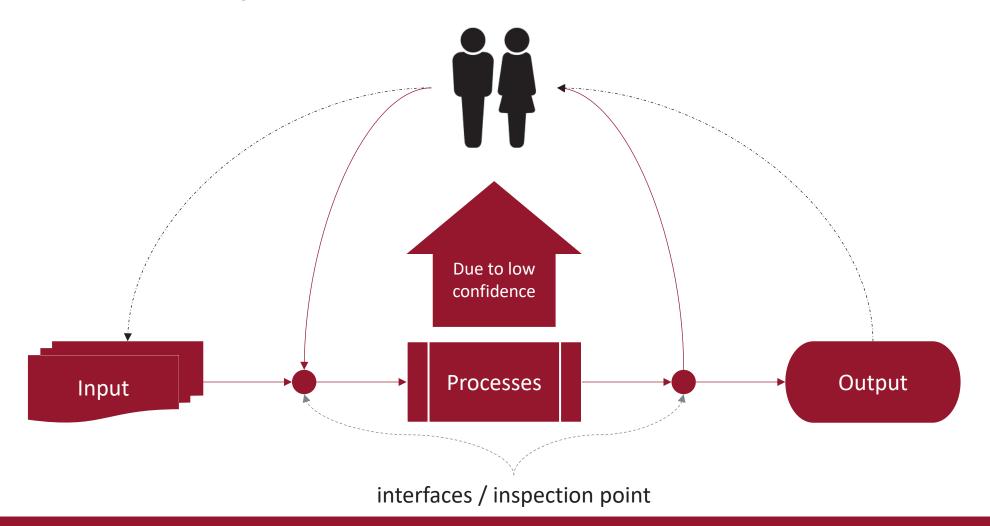
Industry 5.0 And Human Centric Design


Industry 5.0 and Human Centric Design emphasize integrating human creativity with advanced technology for sustainable and inclusive industrial processes.

Tools and approaches

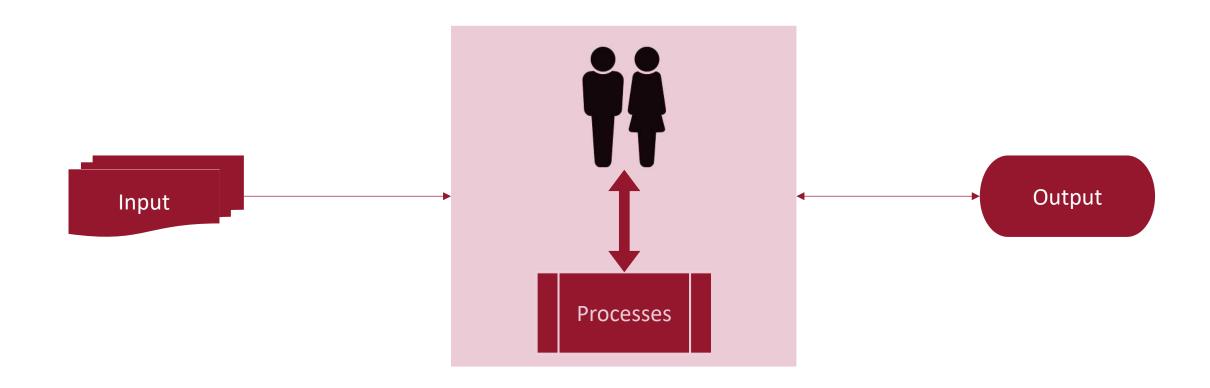

- > Edge Computing
- > Human in the Loop
- Human at the Edge
- Proactivity in Machines

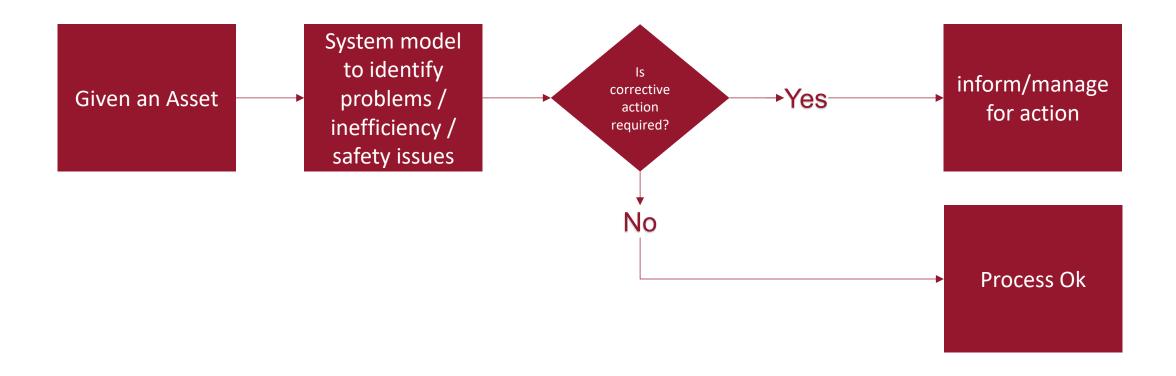
Towards a Sustainable Digital Future – OEM Focus


Edge Computing

Edge computing is a computing approach that processes data near its source to reduce latency and bandwidth use.

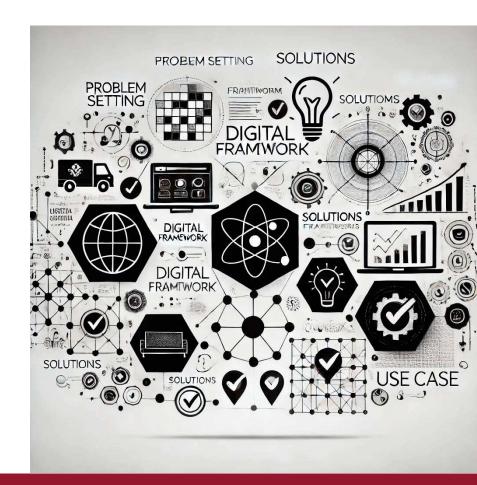
Human in the Loop (HITL)

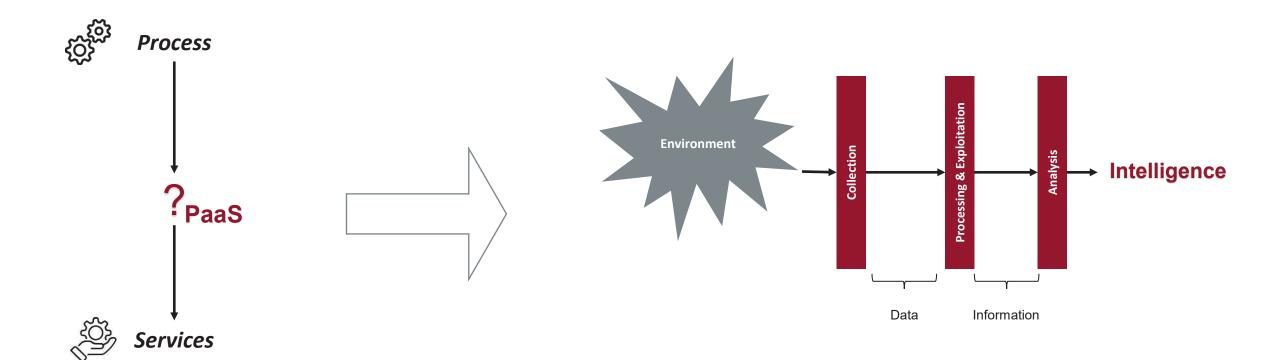

HITL involves incorporating human judgment into automated systems to ensure accurate and ethical decision-making.


Human at the Edge

"Human at the Edge" involves placing human decision-making close to data sources in edge computing environments for real-time responses.

Proactivity in Machinery

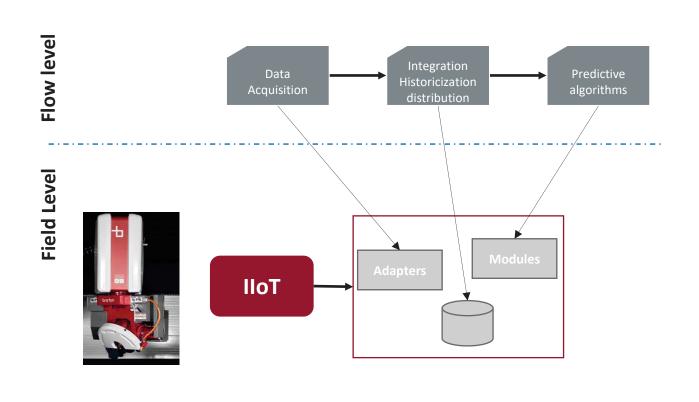

Proactivity in machinery refers to the capability of machines to anticipate needs and act in advance to address them, often using Al and data analytics. This approach improves efficiency, safety, and predictive maintenance.

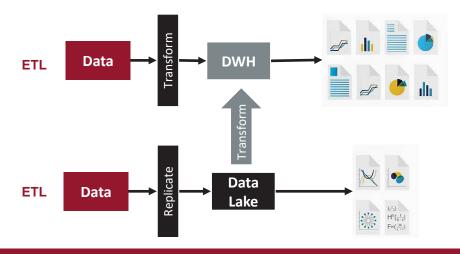

Use case

- Problem Setting
- Digital framework
- > Solutions

Problem Setting

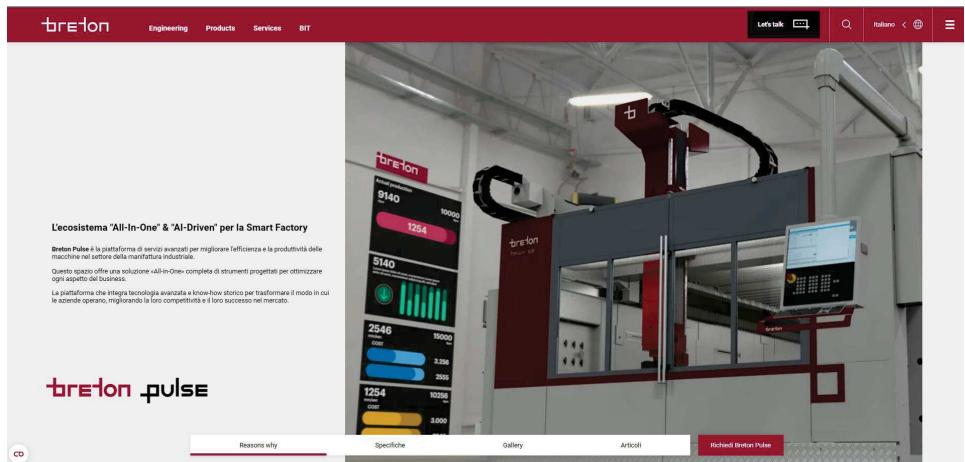
Business model




Digital Framework

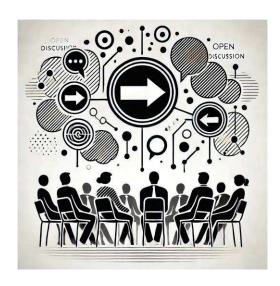
The digital framework integrates edge computing and IoT, funneling data into the cloud, differentiating between data lakes, which store raw data, and data warehouses, which hold structured data for analysis.

Towards a Sustainable Digital Future – OEM Focus



Solution

https://www.breton.it/it_eu/products/software/breton-pulse


Towards a Sustainable Digital Future – OEM Focus

End presentation

Open discussion

Bibliography

Books

Disruptive Innovation

- Clayton M. Christensen, Michael E. Raynor, Jef Dyer, Hal Gregersen

Data Driven

How Performance Analytics Delivers Extraordinary Sales – Jenny Dearborn

Asset Maintenance Management in Industry

A Comprehensive Guide to Strategies, Practices and Benchmarking - Rama Srinivasan Velmurugan, Taru Dhingra

Human-Robot Interaction

An Introduction

- Christoph Bartneck, Selma Sabanovic

Internet of Things: Concepts and System Design

- Milan Milenkovic

Gen-Al and 15.0

Reflections on Emerging Industrial Technologies

- Federico Milan

https://www.amazon.it/Gen-AI-Reflections-Emerging-Industrial-Technologies/dp/B0DHJGM93Q

Smart Scada

Idee di progetto per una supervisione intelligente di impianto

- Federico Milan

https://www.amazon.it/Scada-progetto-supervisione-intelligente-impianto/dp/B09W4BTLQ3

Articles and Sites

Data management for industrial machines and plants

https://www.breton.it/services/articles/white-paper-data-management-for-industrial-machines-and-plants

A Human-Machine Interaction Mechanism

Additive Manufacturing for Industry 5.0—Design and Management Sunanda Rani, Dong Jining, Khadija Shoukat, Muhammad Usman Shoukat and Saqib Ali

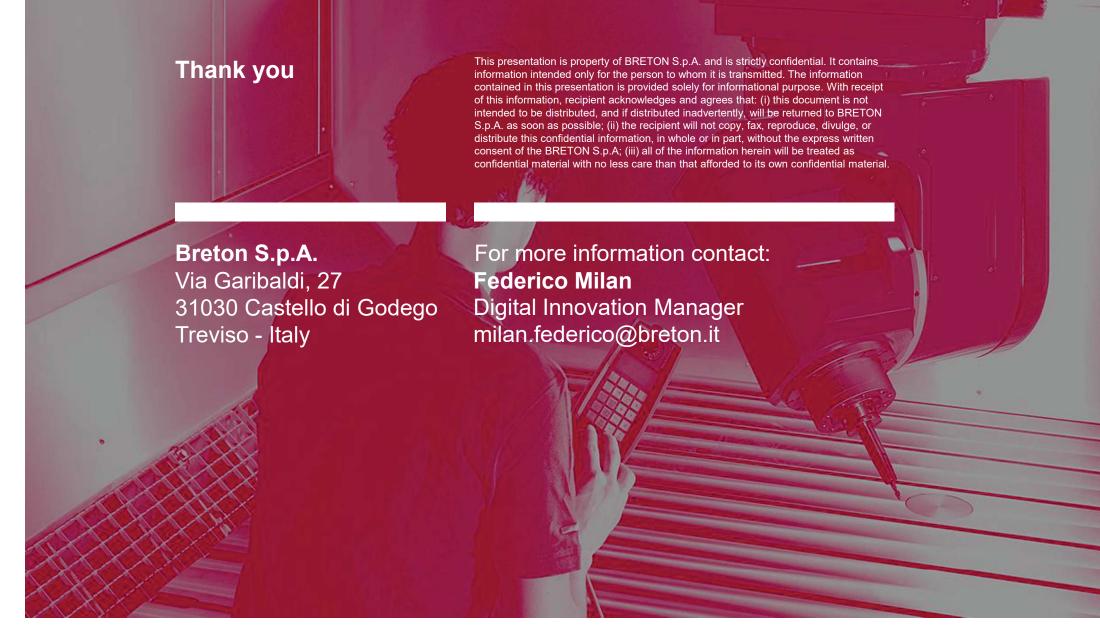
Nawaz

https://www.mdpi.com/2071-1050/

Gartner

Top Trends on the Gartner Hype Cycle for Artificial Intelligence, 2019

https://www.gartner.com/smarterwithgartner/top-trend s-on-the-gartner-hype-cycle-for-artificial-intelligence-2019


McKinsey Digital

Creating value beyond the hype

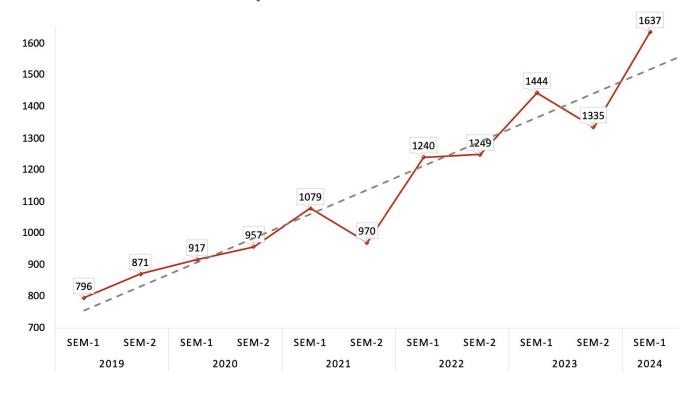
https://www.mckinsey.com/capabilities/mckinsey-digital/how-we-help-clients?cid=oth-pse-gaw.mhm-na-nit2-eur-

web&utm_medium=ad&utm_source=rta_googlesearch&utm_campaign=Z9010482_rta_mckdi gital_loicbailly_program_njt2_wv_20240917_20241122_nonbrandeu&utm_content=Z901048 2_rta_mckdigital_loicbailly_program_njt2_wv_20240917_20241122_nonbrandeu_googlesear ch_eu_nonbrand_tech_na_na__na_na_lp203_na&gad_source=1&gclid=CjwKCAiAudG5BhAREiwAWMISjEDSSobrHkAPDa_RyJ-q5JESUzlpqAPpVrlYxEp-9F7zcMZo1JVt0RoCxvIQAvD_BwE&gclsrc=aw.ds

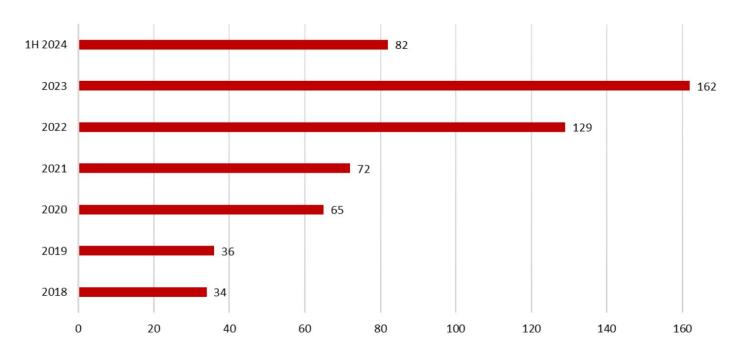
IEC 62443 e Nuovo Regolamento Macchine (UE) 2023/1230

come prepararsi

Agenda

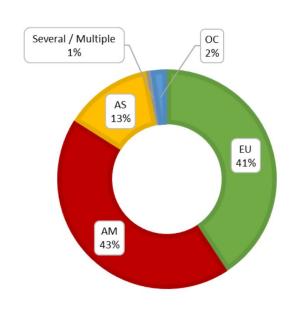

- Rapporto Clusit 2024
- Regolamento UE 2023/1230
- IEC 62443

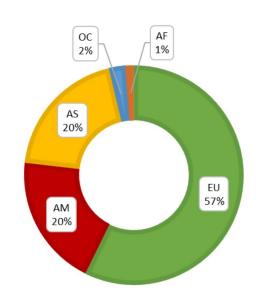
Rapporto Clusit 2024


Incidenti per semestre H1 2019 - H1 2024

© Clusit - Rapporto 2024 sulla Sicurezza ICT in Italia - Aggiornamento giugno 2024

Manufacturing per anno




© Clusit - Rapporto 2024 sulla Sicurezza ICT in Italia

MANUFACTURING PER GEOGRAFIA

2023 1H 2024

Regolamento UE 2023/1230

Roadmap

24 giugno` 2023 4 luglio` 2023 19 luglio 2023

20 gennaio 2027

Pubblicazione su Gazzetta Ufficiale

Pubblicazione della rettifica

Entrata in vigore

Applicazione definitiva e abrogazione della direttiva 2006/42/CE

Roadmap

24 giugno` 2023 4 luglio` 2023 19 luglio 2023

20 gennaio 2027

Pubblicazione su Gazzetta Ufficiale

Pubblicazione della rettifica

Entrata in vigore

Articoli da 26 a 42 dal **14 Gennaio 2024**

Applicazione definitiva e abrogazione della direttiva 2006/42/CE

Articolo 26

"[...] Le macchine o i prodotti correlati devono essere conformi ai requisiti essenziali di sicurezza e di tutela della salute quando vengono immessi sul mercato o messi in servizio. [...]"

ALLEGATO III
REQUISITI ESSENZIALI DI SICUREZZA E DI TUTELA DELLA SALUTE
[...]

"I componenti hardware che trasmettono segnali o dati [...] devono essere progettati in modo tale da essere adeguatamente <u>protetti da un'alterazione</u> <u>accidentale o intenzionale</u>."

(Allegato III, 1.1.9)

"Software e dati critici [...] devono essere adeguatamente <u>protetti da</u> <u>un'alterazione accidentale o intenzionale</u>."

(Allegato III, 1.1.9)

"La macchina o il prodotto correlato devono <u>raccogliere prove</u> di un intervento legittimo o illegittimo sul software o di una modifica del software installato sulla macchina o sul prodotto correlato o della sua configurazione." (Allegato III, 1.1.9)

"la registrazione di tracciamento dei dati generati in relazione a un intervento e delle versioni del software di sicurezza caricato dopo l'immissione sul mercato o la messa in servizio della macchina o del prodotto correlato sia consentita per cinque anni dopo tale caricamento [...]." (Allegato III, 1.2.1)

"[...] <u>non siano consentite modifiche alle impostazioni</u> o alle norme generate dalla macchina o dal prodotto correlato o dagli operatori [...] qualora tali modifiche possano determinare situazioni pericolose;" (Allegato III, 1.2.1)

"La macchina o il prodotto correlato devono <u>individuare il software installato</u> sullo stesso [...] e devono essere in grado di <u>fornire tali informazioni</u> in qualsiasi momento in un formato facilmente accessibile."

(Allegato III, 1.1.9)

"riescano a resistere, se del caso, a circostanze e rischi [...] compresi tentativi deliberati ragionevolmente prevedibili da parte di terzi che conducono a una situazione pericolosa;"

(Allegato III, 1.2.1)

"consentire in qualsiasi momento la correzione della macchina o del prodotto correlato al fine di preservarne la sicurezza intrinseca."

(Allegato III, 1.2.1)

Requisiti di cybersecurity

Protezione dell'integrità

Tracciabilità

Controllo degli accessi

Risposta agli eventi

E quindi?

Cos'è la IEC 62443?

General

1-1

Concepts & models

1-2

Glossary of terms

1-3

Security metrics

1-4

Security lifecycle

Policies & Procedures

2-1

Security program

2-2

Protection levels

2-3

Patch management 2-4

IACS service providers

2-5

Implementati on guide

System

3-1

Security technologies

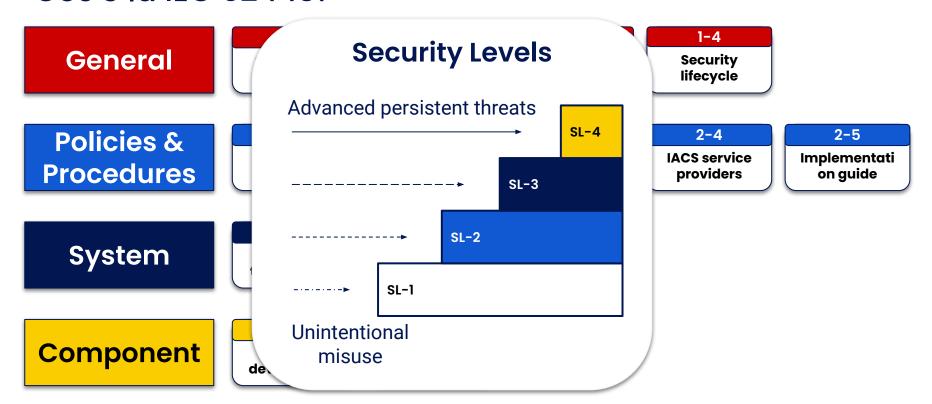
3-2

Risk assessment 3-3

Secure systems

Component

4-1


Product development

4-2

Secure components

Cos'è la IEC 62443?

Cos'è la IEC 62443?

General

1-1

models

Concepts &

1-2

Glossary of terms

1-3

Security metrics 1-4

Security lifecycle

Policies & **Procedures** 2-1

Security program 2-2

Protection levels

2-3

Patch management 2-4

IACS service providers

2-5

Implementati on guide

System

3-1

Security technologies 3 - 2

Risk assessment 3-3

Secure systems

Component

4-1

Product development 4-2

Secure components

IEC 62443

Protezione dell'integrità

IEC 62443-3-3 SR 3.4 IEC 62443-4-2 EDR 3.2 IEC 62443-4-2 EDR 3.14

Controllo degli accessi

IEC 62443-3-3 SR 1 IEC 62443-3-3 SR 2.1 IEC 62443-3-3 SR 5

Tracciabilità

IEC 62443-3-3 SR 2.8 IEC 62443-3-3 SR 2.9

Risposta agli eventi

IEC 62443-3-3 SR 3.7 IEC 62443-3-3 SR 7 IEC 62443-4-2 CR 1.11

Protezione dell'integrità

- Verifica integrità software di boot e runtime
- Verifica integrità dati e software
- Firma digitale del software
- Whitelist applicazioni autorizzate
- Sandboxing

Controllo degli accessi

- Username univoco e password complesse
- Autenticazione a due fattori
- Gestione utenti basata su ruoli
- Doppia autorizzazione per operazioni critiche
- Crittografia
- Segmentazione di rete

Tracciabilità

- Logging estensivo
- Logging dettagliati
- Storage adeguato alla normativa applicabile
- Monitoraggio dello storage
- Log accessibili in sola lettura

Risposta agli eventi

- Protezione dagli attacchi DoS
- Protezione da attacchi Brute-force
- Limitazione delle risorse in uso
- Sistemi di backup
- Ripristino del sistema
- Least functionality

Fine?

GRAZIE

Omnia Technologies

Digital Solutions

Lorenzo Merlini - Group CI&DO

CONFIDENTIAL AND PROPRIETARY
Any use of this material without specific permission of Omnia Technologies is strictly prohibited

Omnia Technologies: numeri

Leader globale nel design e costruzione di soluzioni innovative e sostenibili nel mondo del food, beverage e pharma.

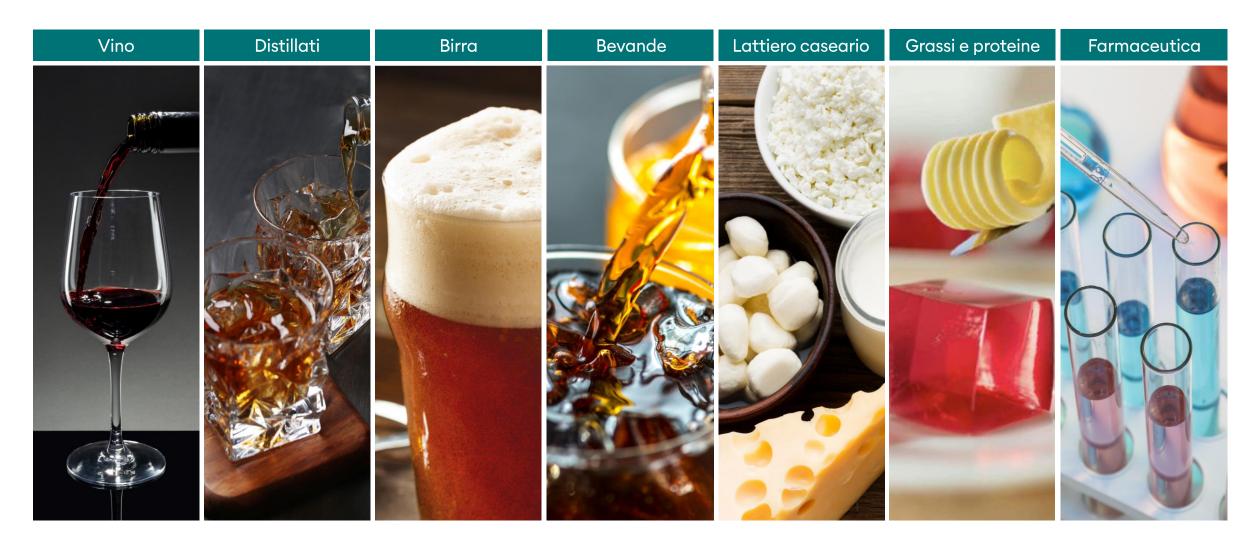
30+ Sedi Produttive

24 Uffici Commerciali e Service

+2.500 Persone

80% Export

+400 R&S e Ingegneri



~700 M€ Fatturato

Omnia Technologies: mercati finali

Overview di Gruppo

Omnia Technologies è un Gruppo che unisce le **competenze dei migliori specialisti** nelle tecnologie per il settore del food, beverage e pharma.

Il team di specialisti delle tecnologie integrate: dal processo al confezionamento finale. Un unico partner al servizio del cliente per fornire soluzioni chiavi in mano e linee di automazione sostenibili.

Leader nella progettazione e produzione di macchinari per l'industria del vino, distillati, birra, bevande, prodotti lattiero caseario, grassi e proteine - oggi fornisce soluzioni anche per il settore farmaceutico e medicale.

Il nostro Gruppo conta 39 unità produttive, 24 uffici commerciali diretti nel mondo e un team di oltre **400** ingegneri impegnati nelle attività di **R&S** e **innovazione**.

La nostra storia di acquisizioni e crescita

DELLA TOFFOLA Acquisizione di: Acquisizione di: Acquisizione di: Acquisizione di: APE bertolaso parmeare COMAS 5 Investindustrial Ingresso nel settore farmaceutico Etichettatura e imballaggio (Ape) Iniziative di sviluppo della Macchine automatiche e cosmetico (Comas) Imbottialiamento (Bertolaso) strategia di gruppo, supportando Serbatoi e sistemi di grandi per l'orientamento (Alfatre) Macchine per la filtrazione l'espansione di nuovi mercati Macchine farmaceutiche per dimensioni (Favotto) (Permeare) e nuove acquisizioni l'assemblaggio dell'alluminio (Giuseppe Desirò) Set-2021 Set-2020

Macchine per il packaging farmaceutico (Tecnomaco)

Ago-2023 Dic-2021 Dic-2022 Apr-2023 Nov-2023 Feb-2024 Maa-2024 Set-2024 Ott-2024

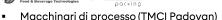
Acquisizione di:

Sistemi di distillazione completi continui e discontinui

Acquisizione di:

Sistemi completi per la lavorazione di Grana e formagai duri (Progema)

Acquisizione di:


(Innotec)

Attrezzature per la microfiltrazione

Tecnologie di microfiltrazione (Win&Tech) Assistenza tecnica e service (Omega)

WIN&TECH

Acquisizione di:

Acquisizione di:

Acmi

Acquisizione di:

Acmi Acmi

Soffiaggio, riempimento e

ACMI Blowing & Filling)

Imbottigliamento e confezionamento (ACMI)

etichettatura (ACMI Labelling,

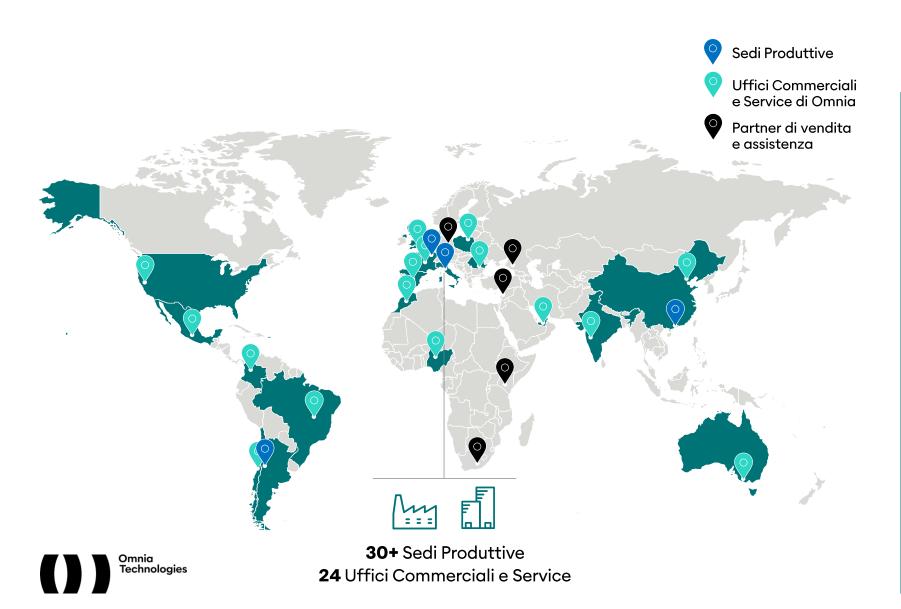
- Soluzioni per la pressatura di champagne (Coquard)
- Macchine enologiche (Cadalpe)
- Capsulatrici e gabbiettatrici (Nortan)

Leve sinergiche

Combinare e migliorare l'offerta post-vendita attraverso la presenza globale di Omnia

Cross-selling su tutta la base installata globale di 25.000 di Omnia

Condividere le capacità produttive, l'impronta e la proprietà intellettuale di Omnia tra le divisioni



Unire acquisti e approvvigionamento per rafforzare la capacità di resilienza nella catena del valore

Ottimizzare l'ingegneria e l'allocazione delle risorse per garantire l'efficienza della produzione

Una realtà globale, con una forte presenza commerciale e post vendita...

Omnia Technologies ha una presenza consolidata in tutti i continenti.

- La vicinanza al cliente è assicurata da un team e da una rete consolidata di partner locali
- Processi di ingegneria integrati e strumenti comuni a tutte le piattaforme aziendali
- Assistenza remota sui clienti attraverso dispositivi diagnostici loT

...e una proposta di valore integrata

Soluzioni di processo

Vino

Distillati

Bevande e Birra

Lattiero caseario

Farmaceutica e cosmetica

Macchine per la filtrazione tangenziale

Distillerie a ridotte emissioni di carbonio

Sistemi di stabilizzazione

Pastorizzatori

Macchine tappatrici

Pigiatura dell'uva

Serbatoi e

autoclavi

Sistemi di filtrazione tangenziale

Sale sciroppo

Sale cottura

Pastorizzatori per oli e grassi

Impianti per

il formaggio

Macchine di riempimento

Sistemi di imbottigliamento

Riempitrici ad alta velocità

Macchine l'etichettatura

Sistemi di imballaggio

Sistemi di pulizia dell'aria

Pallettizza-

tori

Impacchettatori estensibili

Confezioni termoretraibili

Twisterbox

Sistemi di trasporto

Supportati dai migliori servizi post-vendita e di Digital IoT della categoria

Dati chiave \

40+ Famiglie di prodotti

30.000

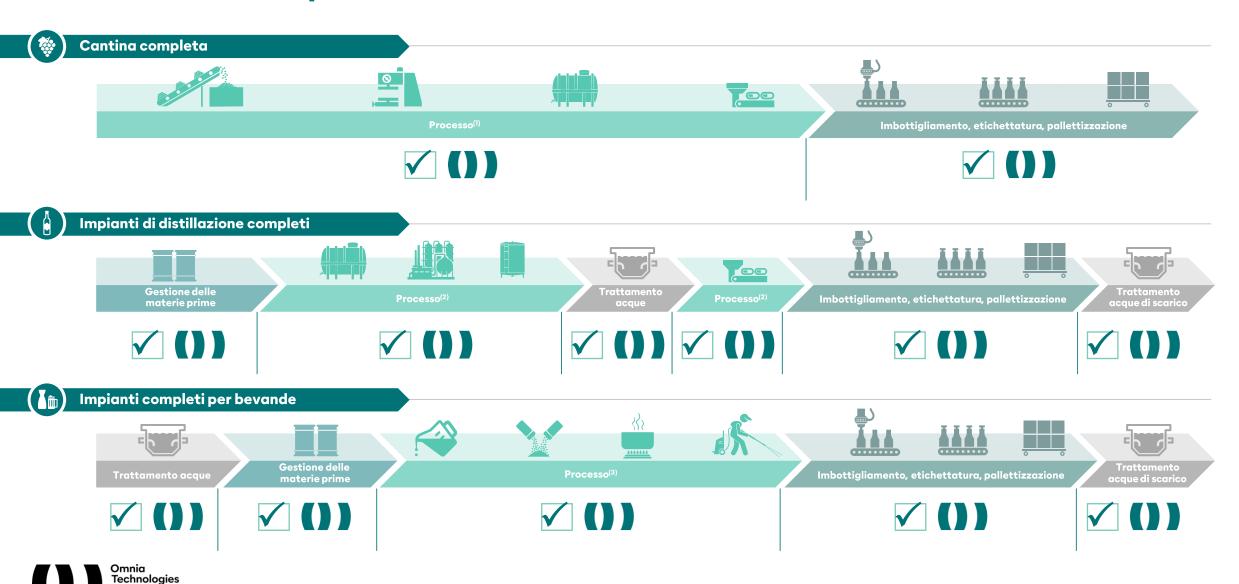
€700k+

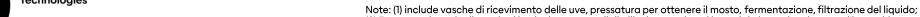
Fornitore di soluzioni chiavi in mano

Personalizzazione + standardizzazione

Potenziale Cross-Selling

Innovazioni leader nel mercato


Tecnologia Made in Italy



Leader in sostenibilità

La nostra leadership nella catena del valore

⁽²⁾ Fermentazione degli zuccheri in alcol, processo di distillazione, serbatoi in acciaio inox e barrique per l'invecchiamento, miscelazione/refrigerazione/filtrazione;

⁽³⁾ Dosaggio e miscelazione degli ingredienti, trattamento termico e pastorizzazione, lavaggio/sanificazione degli impianti.

I nostri valori

01.

Tecnologia

Innovazione

Con un team di oltre 400 ingegneri di grande esperienza, progettiamo e sviluppiamo le tecnologie di automazione più avanzate, puntando su affidabilità e sostenibilità.

02.

Sostenibilità

Rispetto

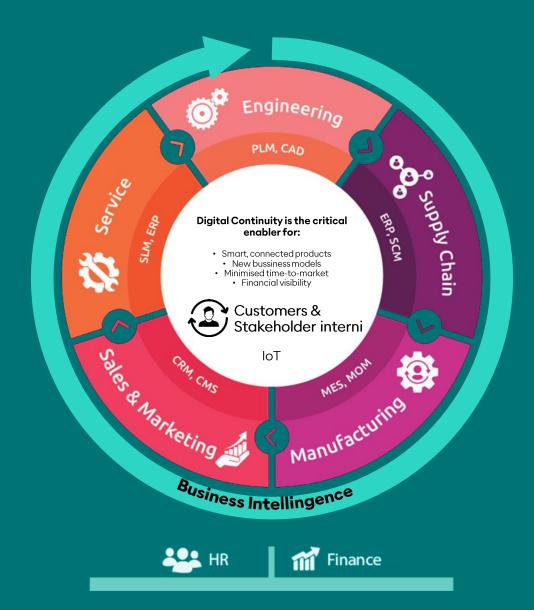
Ci impegniamo per la sostenibilità – rispettiamo le nostre persone e il nostro ambiente e apprezziamo il patrimonio delle comunità locali in cui operiamo, che intendiamo sviluppare e preservare.

03.

Servizio

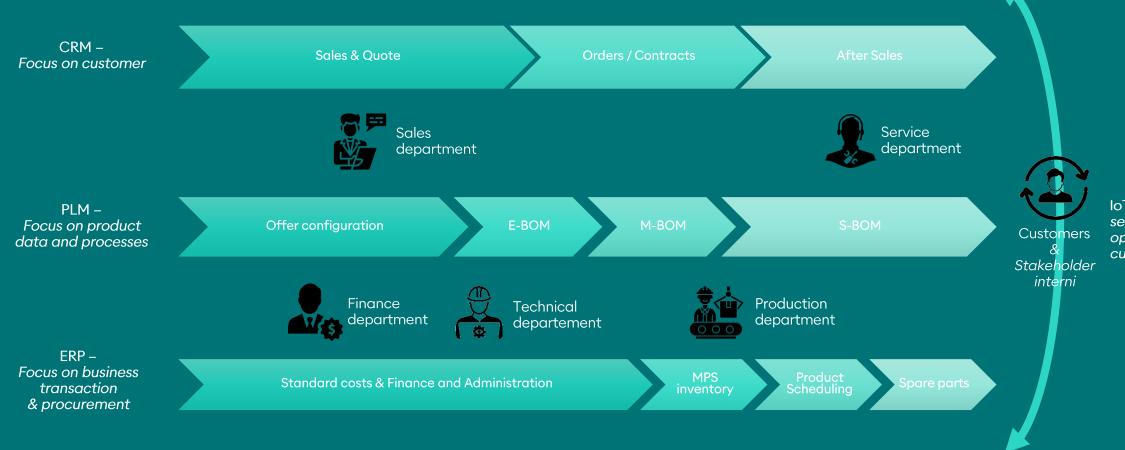
Accessibilità

Siamo impegnati a supportare i nostri clienti con un team di tecnici mobilitati in tutto il mondo.



Digital Solutions

Digital Ecosystem


Continuità digitale

Digital Ecosystem

Continuità digitale

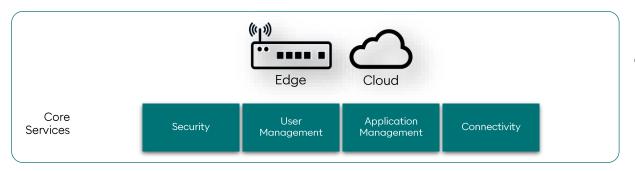
IoT - Focus on service/product optimization and customer lifecycle

IoT Platform

End-to-end Solution

loT Application

Integrated Applications



Connected

Things

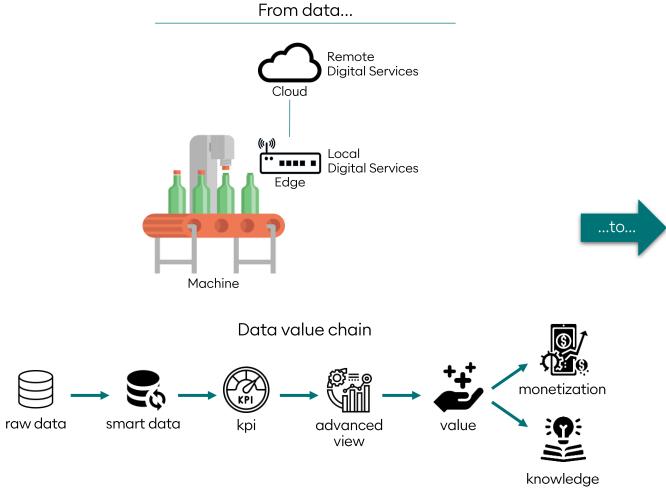
Partner IoT Platform Partner IoT Platform

Other partners' dedicated connected things

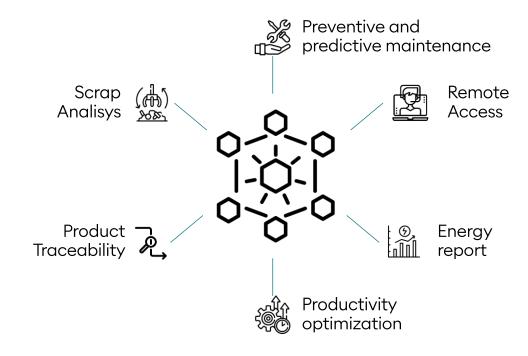
IoT Platform

End-to-end Solution

loT Application


Partner Application

Other partners' dedicated connected things



IoT Platform

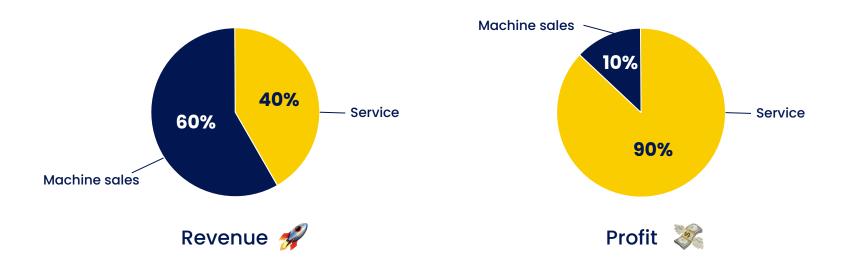
Il valore delle macchine connesse

...Digital Services

Grazie

This presentation is property of Omnia Technologies and is strictly confidential. It contains information intended only for the person to whom it is transmitted. The information contained in this presentation is provided solely for informational purpose. With receipt of this information, recipient acknowledges and agrees that: (i) this document is not intended to be distributed, and if distributed inadvertently, will be returned to Omnia Technologies as soon as possible; (ii) the recipient will not copy, fax, reproduce, divulge, or distribute this confidential information, in whole or in part, without the express written consent of the Omnia Technologies; (iii) all of the information herein will be treated as confidential material with no less care than that afforded to its own confidential material.

Once the machine has left, you're blind.



Service champions save the world

After-service. Grows revenue and profit.

After-service challenges

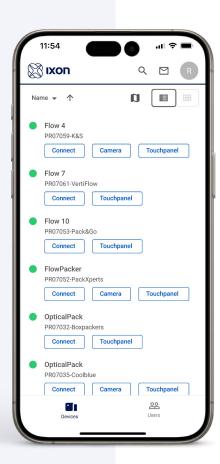
Dealing with cybersecurity

Service tools & Integrations

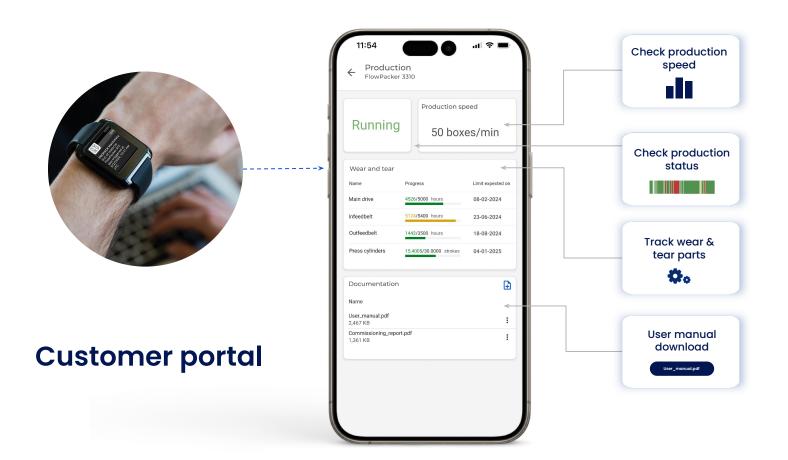
Access machine data

Collaborate with customers

Edge Gateways



IXrouter3 Edge Gateway


RS-Mach Inc.
Unplugged
IXON Guest

Remote Access for everyone

Machine Insights

Core IT Stack for the Machine Builder

CRM

- Sales
- Customer interactions
- After-sales support

ERP

- Orders
- Projects
- Invoicing
- Purchasing
- Manufacturing

Product Designs

PLM

- Revisions
- Documentation

CAD

- Design
- Engineering
- Simulations

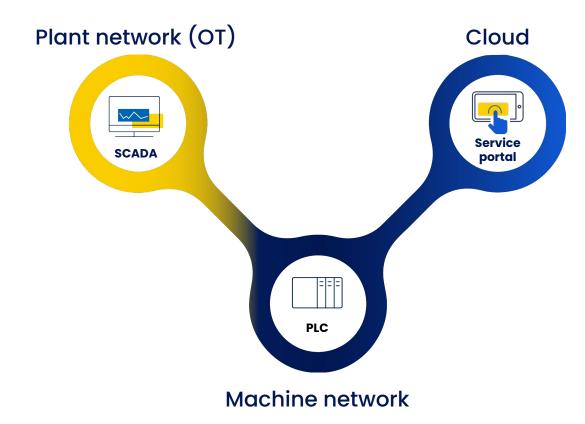
Remote Access

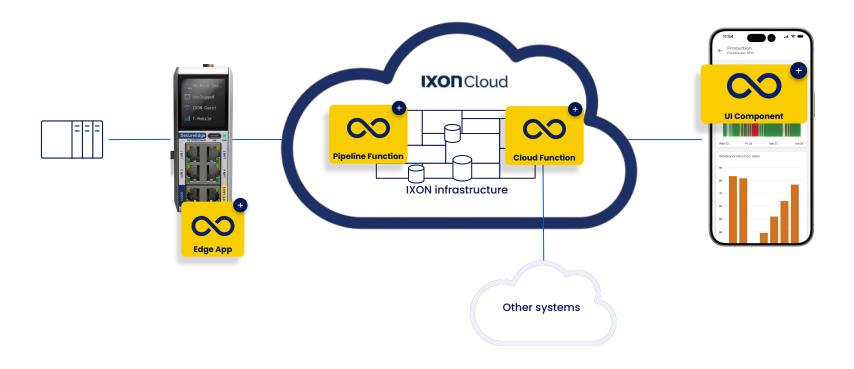
- VPN access
- Troubleshooting
- Device management

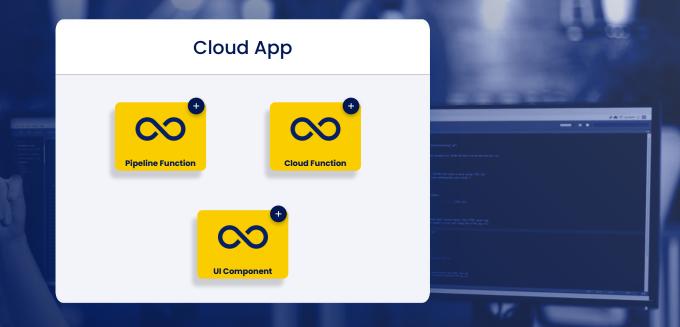
Customer Portal

- Troubleshooting insights
- Predictive maintenance

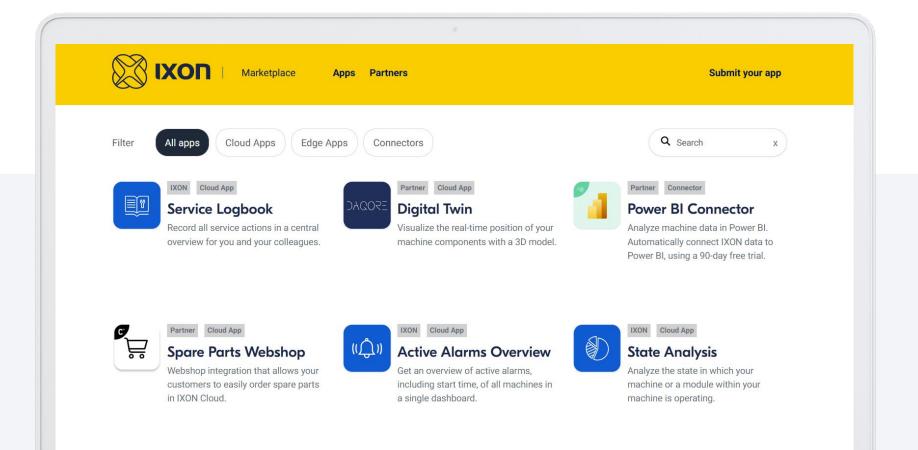
Data Insights


- Troubleshooting insights
- Predictive maintenance

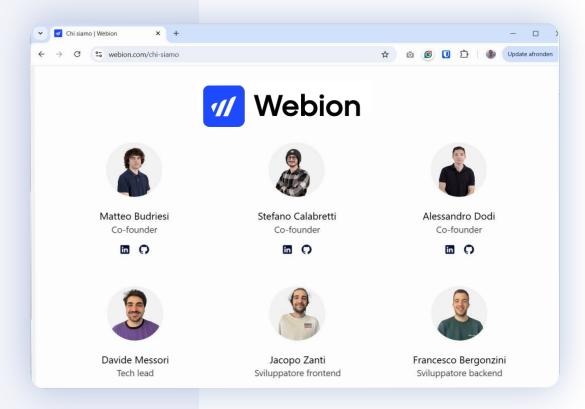

SecureEdge Pro \rightarrow Bringing three worlds together.



$\textbf{AppEngine} \rightarrow \textbf{Create and Manipulate stuff}$



Easy for users → All logic packed in one App



Get inspired. Get apps.

Local partners

Development Pillars 2025

